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Core mode cutoff is a useful concept not only for a tapered single-core fiber (SCF) but also for a tapered multicore
fiber (MCF) to realize cladding mode transmission. In this paper, cut-off conditions of either core mode for tapered
SCFs or supermodes for MCFs are theoretically investigated. Rigorous analytical formulas are derived for the
modes of SCF by a three-layer waveguide model, and an approximation formula of the cut-off condition is given
for the LP01 mode. The supermodes of MCFs are analyzed by the coupling mode theory, and the cut-off condition
is calculated by a numerical method. Simulation results show that the in-phase supermode of MCFs has a similar
cut-off condition with that of SCF. Based on this property, a convenient approximate formula is given to estimate
the cut-off condition of the in-phase supermode for tapered MCFs. © 2015 Chinese Laser Press
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1. INTRODUCTION
Multicore fiber (MCF) has been under intense research re-
cently among the industrial communities due to its higher in-
formation capacity in comparison with traditional single-core
fibers (SCFs), and it presents great potential to be the next-
generation transmission fiber [1–4]. In addition, MCF also
seems to be a promising method to realize power scaling with
good beam quality, which is meaningful for high-power fiber
lasers [5–7]. Unlike traditional SCFs, the cores are arranged
separately in MCFs, which results in a totally different fiber
mode property [8–10]. The electric field in each core can
be coupled to adjacent cores via evanescent wave, so optic
signals in the MCFs are actually transmitted by supermodes
[11]. There have been many works mainly paying attention
to the properties of the supermodes [12–16]. Apart from tradi-
tional MCFs, some new structures like trench-assisted MCFs
have also been studied to decrease the cross talk between
cores [17].

However, all the works mentioned above only care about
the electric field in fiber cores, and the effect of the cladding
is ignored, so that infinite cladding is taken into consideration.
This assumption is reasonable for most cases due to the large
diameter of cladding. However, for MCFs with small diameter
of cladding, the effect of cladding should be considered, and
the whole structure should be seen as a three-layer waveguide
(TLW). This phenomenon is obvious, especially for tapered
MCFs, which means that core modes may also be cut off in
tapered MCFs just like that in SCFs [18–20].

In this present paper, we discuss the cut-off condition of
core modes for tapered MCFs. First, rigorous analytical for-
mulas of the core modes and cladding modes are derived
for SCFs based on the TLW model. The cutoff of core modes
for SCFs is investigated, and an approximate formula is given
to estimate the cut-off condition of the LP01 mode. Second,

supermodes of a three-core fiber (TCF) are analyzed by
coupled mode theory, and the cut-off condition is numerically
calculated by analysis software (Comsol Multiphysics).
Results show that the cut-off condition of the in-phase super-
mode in MCFs has a similar property with the LP01 mode in
SCFs. Finally, more examples are investigated to verify this
property, and a reasonable explanation is given. Based on this
property, a convenient formula can be derived to estimate the
cut-off condition of the in-phase supermode, which is very
useful for tapered MCF applications.

2. CASE OF TAPERED SINGLE-CORE FIBER
First, let us consider a tapered single-core step-index fiber. As
shown in Fig. 1, the core radius is a and the cladding radius is
b in the original part of the SCF. While in the tapered part, the
core radius is az, and the cladding radius is bz at the longitude
position z, where the taper ratio is define as TR � dz∕d. For
a tapered fiber, the refraction index is unchanged (NA is a
constant), while the core diameter and cladding diameter are
decreased equally. Hence, the normalized frequency V is also
decreased during the process of tapering. It is obvious that
a tapered fiber does not have any modes because it is not
a uniform waveguide. However, for an adiabatic tapered fiber,
we can build a series of equivalent uniform fibers whose
cross-sectional geometry and refraction index are the same
with the tapered fiber at each longitude position [21,22]. By
this method, we can easily analyze fiber mode properties with
any TRs.

In the TLW model, the core can be seen as the first layer
with index n1, and the finite cladding can be seen as the sec-
ond layer with index n2. It should be noted that, in the TLW
model, the effect of material outside the cladding should not
be ignored, and it should be seen as the third layer with index
n3 (n3 � 1 for air).

224 Photon. Res. / Vol. 3, No. 5 / October 2015 Zhou et al.

2327-9125/15/050224-05 © 2015 Chinese Laser Press

http://dx.doi.org/10.1364/PRJ.3.000224


The main difference between TLW model and infinite clad-
ding model is whether there are cladding modes. In the infinite
cladding model, the electric field in the cladding decreases
gradually along the radial direction until 0 at Rclad � ∞.
However, in the TLW model, the finite cladding and outer
material can be also seen as a waveguide, so that the electric
field in the cladding will no longer satisfy decreasing to 0
at Rclad � ∞.

It should be mentioned that weak-guidance approximation
is not satisfied in the cladding-air interface, where the refrac-
tion index difference is about Δ ≈ 26% (n2 � 1.45 for silica
glass). However, it is sufficiently accurate here in the analysis
of the cut-off condition estimation by scalar wave equation.
According to the TLW model, the transverse electric field ψ
is the solution of the scalar wave equation:

r2
∂2

∂r2
ψ � r

∂
∂r

ψ � ��n2k20 − β2�r2 −m2�ψ � 0; (1)

where n is the refraction index, k0 is the wavenumber, and β is
the propagation constant. The effective index can be obtained
with neff � β∕k0.

The solutions of Eq. (1) in core or cladding depend on the
value of neff relative to n. Hence, the transverse electric field ψ
is obtained from Eq. (1) as [22]

ψ �

8>>><
>>>:

AJm

�
U
a r

�
; r < a;

BIm
�
W
a r

�
� CKm

�
W
a r

�
; a ≤ r ≤ b;

DKm

�
T
b r

�
; r > b;

�2�

where the fiber normalized modal parameters in different

layers are defined as U � ak0
������������������
n2
1 − n2

eff

q
, W � ak0

������������������
n2
eff − n2

2

q
,

Q � bk0
������������������
n2
2 − n2

eff

q
, and T � bk0

������������������
n2
eff − n2

3

q
.

According to the continuity of ψ and dψ∕dr at the core-
cladding and cladding-outer interfaces, the eigenvalue equation
can be derived as��������

Jm�U� −Im�W� −Km�W� 0
U
a J

0
m�U� −

W
a I

0
m�W� −

W
a K

0
m�W� 0

0 Im�W b
a� Km�W b

a� −Km�T�
0 W

a I
0
m�W b

a� W
a K

0
m�W b

a� −

T
b K

0
m�T�

��������
� 0 �3�

for neff ≥ n2 and��������
Jm�U� −Jm�Qa

b� −Nm�Q a
b� 0

U
a J

0
m�U� −

Q
b J

0
m�Qa

b� −

Q
b N

0
m�Q a

b� 0
0 Jm�Q� Nm�Q� −Km�T�
0 Q

b J
0
m�Q� Q

b N
0
m�Q� −

T
b K

0
m�T�

��������
� 0 �4�

for neff < n2. In these formulas, Jm and Nm are the m-order
Bessel function of the first kind and the second kind, respec-
tively. Im and Km are the m-order modified Bessel function of
the first kind and second kind, respectively.

It can be concluded that there are two eigenvalue equations
for every fiber mode, which are core mode (neff ≥ n2) and
cladding mode (neff < n2). For a tapered SCF, the fiber core
mode will cut off at the point of neff � n2. As an example, the
effective indices of the low-order modes for a few mode SCF
(a � 10 μm, b � 65 μm, n1 � 1.45221 with NA � 0.08) are
calculated based on Eqs. (3) and (4). The results are shown
in Fig. 2, where the horizontal coordinate is V not TR for
the convenience of comparison. It can be found that the
cut-off condition of high-order modes in the TLW model is
almost the same as that in the infinite cladding model. (For
example, Vc ≈ 2.4 for LP11 mode and Vc ≈ 3.8 for LP02 and
LP21 mode in both cases.) However, the cut-off condition
of the LP01 mode is totally different because it will never
be cut off in the infinite cladding model.

For a tapered SCF, we always care about the mode evolu-
tion property of the LP01 mode. However, the analytic solu-
tion given above is not convenient for calculating the exact
cut-off point. Another approximate solution is often used for
the LP01 mode [19]:

Vc ≈
���������
2

ln s

r �
1� 0.26

ln s

�
−1∕2

; (5)

where s � b∕a is the cladding-core ratio.

3. CASE OF TAPERED THREE-CORE FIBER
In this section, the cut-off condition of core modes for tapered
TCF is analyzed. Figure 3 gives an example of the index dis-
tribution profile for a common isometric distributed TCF. As
shown in Fig. 3, the core radius is a, and the cladding radius is
b. The distance between the adjacent cores is Λ, and an equiv-
alent core with radius R is defined as the circumcircle of all
the cores. Here, the cladding-core ratio is defined as S � b∕R.
Similarly, we analyze fiber mode properties in tapered MCF by
building a series of equivalent uniform MCFs.

The basic core modes for MCFs are supermodes, which are
generated by intercoupling of each core mode. A theoretical
calculation for supermodes of MCF can be analyzed based
on the coupled mode theory in the case of a weak coupling

Fig. 1. Refraction index profile of a tapered SCF with TLW model.
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Fig. 2. Effective indices for lower-order modes in SCFs.
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condition. Here, the derivation process of supermodes for a
TCF is given with scalar approximation.

The electric field of a TCF can be expressed as

Eυ�x; y; z� �
X
m

Am�z�Em�x; y� exp�iβmx�; (6)

where υ is the order of the mode and Em�x; y� exp�iβmz� is the
mode of the mth fiber.

A vector can be built based on Eq. (6) as
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�
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#
: (7)

According to coupling mode theory, the electric field can be
given as a result of coupling between different core modes:

dE�z�
dz

� CE�z�; C �
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iκ iβ iκ
iκ iκ iβ

#
: (8)

Here, we consider all three fiber cores have the same
propagation parameters β, and the mode coupling coefficient
of the adjacent fiber cores κ can be derived from [23]
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Hence, the eigenvectors (supermodes) are derived as

E1�x;y;z�� �E1�x;y��E2�x;y��E3�x;y��exp�i�β�2κ�z�;
E2�x;y;z�� �E2�x;y�−E3�x;y��exp�i�β− κ�z�;
E3�x;y;z�� �2E1�x;y�−E2�x;y�−E3�x;y��exp�i�β− κ�z�: (10)

Among all three supermodes, only E1�x; y; z� has all posi-
tive coefficients, which is called the in-phase supermode.
Figure 4 shows the mode field distribution of the supermodes
with different TRs for a TCF (a � 2.5 μm, NA � 0.14,
Λ � 10 μm, and S � 3). From Figs. 4(e) and 4(f), we can see
the similarity between the supermodes in tapered TCF and LP
modes in SCFs. For convenience of discussion in the follow-
ing section, these supermodes are called LP01 and LP11
modes, respectively.

As we can see in Figs. 4(d)–4(f), the relative mode field area
is larger, and the distribution is more concentrated than that
of Figs. 4(a)–4(c). This is mainly due to the decrease of a and
Λ during the tapering processing. With decreased a, light

transmitted in the core area will gradually diffuse to the clad-
ding. With decreased Λ, the distances between adjacent cores
are smaller. Both of these decreases will lead to the increase
of mode coupling coefficient κ.

Though analytical formulas have been deduced based on the
coupled mode theory, it can only be used as a phenomenologi-
cal approximation solution of supermodes. That is because a
tapered MCF may not satisfy the weak-coupling condition. For
the case of a strong-coupling waveguide, especially when the
effect of cladding cannot be ignored, it is difficult to obtain a
rigorous analytical solution. On the other hand, the mode cou-
pling coefficient κ is also complicated to calculate by analytical
method for different taper conditions. Hence, the method of
numerical analysis is often used with more precise results.
Here, the effective indices of the low-order modes of the
tapered TCF with the same parameters are calculated by a fully
vectorial finite element mode solver (Comsol Multiphysics),
with the results shown in Fig. 5, where V presents the normal-
ized frequency of each fiber core in TCF.

Unlike the curves in Fig. 2, LP01 and LP11 modes for TCF
have the same effective indices at the beginning of the taper
process, where the mode coupling coefficient is too small for
relatively far distance between fiber cores, and every fiber
core can be seen as an independent waveguide. Apart from
this difference, the evolution process of effective indices for

Fig. 3. Cross profile of TCF with TLW model.

Fig. 4. Mode field distribution of the supermodes for a TCF with
different taper ratios. (a)–(c) TR � 100%. (d) TR � 32.5%. (e),
(f) TR � 54.3%. (d)–(f) Point of core mode cutoff with neff � n2.
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in TCF.
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TCF is similar to that of SCF. Hence, the core mode’s cut-off
condition of a tapered MCF also can be similarly defined as
the point of neff � n2. Based on this definition, the core
mode’s cut-off condition for tapered TCF is first investigated.
Figure 6 gives the cut-off condition of LP01 mode by the
parameter of single-core normalized frequency V for different
S and Λ. (In all the simulations, parameters of the SCF are
unchanged with a � 2.5 μm, NA � 0.14.) It can be concluded
that the cut-off condition mainly depends on the cladding-core
ratio S, while the impact of Λ can be ignored.

It is an interesting phenomenon that there seems to be a
relationship between the cut-off normalized frequency of
SCF and that of TCF. We further calculate the ratio of their
cut-off normalized frequency and find it drops very close to
a constant with RV ≈

p
3. This approximation is more precise

for larger S.
The cut-off condition of the LP11 mode is shown in Fig. 7.

Unlike the LP01 mode, the cut-off condition of the LP11 mode
has a relationship with both factors, and the impact of Λ is
larger than that of S. As mentioned above, Vc ≈ 2.4 is close
to a constant for large S in SCFs. It is also close to a constant
for large S in TCFs.

4. MORE EXAMPLES AND DISCUSSION
In Section 3, the cut-off conditions of tapered TCFs are inves-
tigated in detail. In this section, cases of four-core fibers
(FCFs), six-core fibers (ICFs), and seven-core fibers (ECFs)
are also investigated by the same method. The fiber cross

profiles are shown in Fig. 8, and the equivalent core is also
defined as the circumcircle of all the cores, while Λ is defined
as the distance between nearest fiber cores.

The in-phase supermodes of these MCFs with different TRs
are calculated by the same method, as shown in Fig. 9.

The cut-off conditions of LP01 mode for these MCFs are
also calculated by numerical simulations. Results also show
the impact of Λ can be ignored, and cut-off conditions mainly
depend on the cladding-core ratio S, as shown in Fig. 10. We
further calculate the cut-off normalized frequency ratio of
SCF and MCFs and find it drops very close to a constant with
RV ≈

p
m (m is the number of the fiber cores).

Actually, this conclusion is suitable for all tapered MCFs
only if the core distribution is symmetrical and the cladding-
core ratio is much larger than 1. It can be seen from Figs. 4
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Fig. 6. Cut-off normalized frequency for LP01 mode in TCF.
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Fig. 8. Cross profiles of (a) FCF, (b) ICF, and (c) ECF.

Fig. 9. Mode field distribution of the supermodes for MCFs with
different taper ratios. (a)–(c) TR � 100%. (d) TR � 28.9%. (e) TR �
24.4%. (f) TR � 22.2%. (d)–(f) Point of core mode cutoff with
neff � n2.
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and 9 that the distribution of in-phase supermode is similar to
that of the LP01 mode in SCF when it is cut off. As previously
mentioned, an equivalent step-index SCF can be built to ana-
lyze the in-phase of tapered MCF. The core of this equivalent
SCF is the circumcircle of all the multicores with effective
radius R. The refractive index can be expressed as [24]

n2�r� � n2
2 � �n2

1 − n2
2�u�r; t�; (11)

where u�r; t� is the dopant concentration function.
For each fiber core in the MCF, its normalized frequency V

can be expressed as

V2 � k20

Z
∞

0
�n2�r� − n2

2� · 2rdr: (12)

For a MCF with m fiber cores, the normalized frequency of
the equivalent SCF can be expressed as

V 02 � k20

Z
∞

0
�n2�r0� − n2

2� · 2r0dr0

� k20 ·m
Z

∞

0
�n2�r� − n2

2� · 2rdr: (13)

Compared with Eqs. (11) and (12), we can obtain
V 0 � �����

m
p

V . This result is consistent with the numerical calcu-
lation results. Based on this relationship, the cut-off condition
of the in-phase supermode of tapered MCFs can be easily cal-
culated by the parameters of each fiber core. Compared with
Eq. (5), it can be estimated by

Vc ≈
���������������

2
m ln S

r �
1� 0.26

ln S

�
−1∕2

; (14)

where Vc is the normalized frequency of a single core in MCF
and m is the number of fiber cores.

However, it is difficult to obtain a similar approximate for-
mula for higher-order modes (such as LP11 mode). This is
mainly due to the failure when we try to build an equivalent
step-index SCF to replace a MCF with the same mode field
distribution of high-order supermodes. This phenomenon
can be illustrated by comparing the difference between mode
field in Figs. 4(e) and 4(f) and that in a SCF. This difference is
larger for larger Λ. This can be the reason why results in Fig. 7
show an important relationship between Vc and Λ.

5. CONCLUSIONS
In this paper, we have theoretically investigated the cut-off
condition of core modes for tapered SCFs and MCFs by ana-
lytical and numerical methods. Analytical formulas for fiber
modes in SCFs are derived based on scalar wave equation.
Numerical calculations for MCFs show that the cut-off condi-
tion of in-phase supermode has a relationship with that of the
LP01 mode in each fiber core. This relationship is explained
by building an equivalent SCF. Finally, a convenient formula
has been derived to estimate the cut-off condition of the
in-phase supermode, which is very useful for tapered MCF
applications.
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